
Source Code Analysis for
Highly Safety Critical

Applications
White paper - August 2014

I nven t ing the fu tu re
CONSULTANT

Table of Contents

Source Code Measurement Techniques| 1
About this Paper | 1

Reason for Source Code Analysis | 2
Static Code Analysis | 2

 Code Reviews | 2
Control Flow Analysis | 4

Static Data Flow | 7

Dynamic Code Analysis | 10
Statement Coverage | 11

Decision Condition Coverage | 12
MC/DC Coverage | 14

Path Analysis | 16
Dynamic Data Flow | 19

Coding Measurements for Safety Critical Applications | 19

Quality
Definition

Test Plan

Test Case
Development

Test Design

Test Case ExecutionUser Acceptance Tests

Dynamic
Data Flow
Analysis

Source Code Measurement Techniques

About this Paper
This document has been written to provide the answer to two questions:

How can we increase reliability in our system by source code measurement techniques?

What are the combinations of coding measurements to achieve safety certification of highly critical
applications?

MC/DC
Coverage

Decision
Condition
Coverage

Static Analysis

Dynamic Analysis

Statement
Coverage

Path
Analysis

Critical Analysis

Control Flow
Analysis

Code
Review

Static Data
Flow

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 1

I nven t ing the fu tu re
CONSULTANT

While working in the safety critical industry we experience several software bugs which can be the cause
of human deaths, environmental loss or financial loss for an organization. This paper will highlight one such
problem, which caused life threat and financial loss situation for a well-known organization. But the main
goal of this paper is to analyze how we can eliminate such hazardous situations from our software.

The following article is referenced from the EDN magazine and is available at http://www.edn.com/design/au-
tomotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended acceleration
that led to the death of one of the occupants. Central to the trial was the Engine Control Module's (ECM)
firmware.

Embedded software used to be low-level code we'd bang together using C or assembler. These days, even a
relatively straightforward, albeit critical, task like throttle control is likely to use a sophisticated RTOS and
tens of thousands of lines of code.

For this research, EDN consulted Michael Barr, CTO and co-founder of Barr Group, an embedded systems
consulting firm. As a primary expert witness for the plaintiffs, the in-depth analysis conducted by Barr and
his colleagues illuminates a shameful example of software design and development, and provides a caution-
ary tale to all involved in safety-critical development, whether that is for automotive, medical, aerospace, or
anywhere else where failure is not tolerable.
Barr's ultimate conclusions were that:

It is source code analysis without executing the program. Following measurement techniques are discussed
within this paper.
1. Code Review
2. Control Flow Analysis
3. Static Data Flow Analysis

Mostly code reviews are used to achieve the following goals:

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 2

I nven t ing the fu tu re
CONSULTANT

Reason for Source Code Analysis

Code Reviews

Purpose of Code Reviews

Static Code Analysis

Toyota’s electronic throttle control system (ETCS) source code is of unreasonable quality.

Toyota’s source code is defective and contains bugs, including bugs that can cause unintended accel-
eration (UA).

Code-quality metrics predict presence of additional bugs.

Toyota’s fail safes are defective and inadequate (referring to them as a “house of cards” safety archi-
tecture).

Misbehaviors of Toyota’s ETCS are a cause of UA

These are the basic intentions of all code reviews and can be further extended such as:

There are many approaches to code reviews and a few of them are highlighted in the coming sections.
1. Peer Reviews
2. Code Analysis using Tools

Peer review is the evaluation of work by one or more people of similar competence to the producers of the work.
It constitutes a form of self-regulation by qualified members of a profession within the relevant field.

Second version of this approach is code walkthrough from other team members. In this approach a person should
perform a line-by-line review and identify inconsistencies, harmful areas and lack of clarity in the source code.
This approach has a number of challenges such as:

Practically this process involves the developer of the code with one or more reviewers; he presents his approach
to other colleagues. Reviewers analyze the author's approach, add comments regarding logics and identify erro-
neous situations. One common document is prepared to add findings of the complete team in one source code
file. These points are taken as action items for the next code review meeting.

If the above process is being executed on a third party source code then improvement or modification in the code
is responsibility of the relevant party.

Common Approaches to Code Reviews

Peer Reviews

In some organizations regular code reviews are part of the process, senior or lead developers use their
experiences to identify gaps and risks in the source code. Sometimes they use software tools for peer
reviews but this approach has a few side effects e.g. mistakes get overlooked, clash of egos and huge
time consumption.

Code review with the team members is like a technical discussion and brainstorming sessions. The new
ideas enable the team to take steps forward in terms of the techniques used.

Sometimes code reviews are used to achieve some customer related standards or certifications. If
someone is using third party code then it is necessary to make review process for acquired code.

Allocating sufficient time
Overcoming egos
Planning to execute this process

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 3

I nven t ing the fu tu re
CONSULTANT

To achieve level of reliability by reducing errors in the software. It could save testing time during the
development process.

To save maintenance cost in future. Different types of coding standards are followed in order to
identify which part of code is undetermined.

Control Flow Analysis is the second level of code review by using software tools. This approach is usually
used to verify structure of source code and improve its quality. The following measurements are taken during
this analysis.

Control Flow Analysis

Purpose of Control Flow Analysis

Software tools perform syntax, layout and structural analysis on the source code and report deviation from a
predetermined set of coding standards.

Tools report lots of deviations in legacy code

Different tools are used for each language

Different programming standards are required for each language

• Lines of Code
• Comment Density
• Depth of Loop Nesting

Clarity

Maintainability

Testability

• Cyclomatic Complexity
• Essential Cyclometic Complexity
• Inaccessible/Unreachable Code

• Cyclomatic Complexity
• Number of Functions
• Unconditional Jumps

Code Layout

Comments Density

Naming Convention

Industrial Safety Standards Conformance

Identification of Dead Code

Identification of Memory Leakage

Code Analysis using Tools
It is the second approach in which some tools are used for Code reviews. Most of the organizations use this
approach to save time and avoid failures by using some pre-defined industrial standards.

The main problems of this method are threefold:

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 4

I nven t ing the fu tu re
CONSULTANT

The lines of code of the project baseline should be measureable and within some defined limit. Limits of these
quality checks vary with organizational standards. This attribute takes a part in software clarity check.

Lines of Code

Comment Density
Complete source code of the application should be properly commented. It is necessary that third person or
external assessor can understand the flow of the application by using comments. Software tools should be
used to measure the density of code comments. Density of code comments vary with organizational stan-
dards. This attribute also takes a part in software clarity check.

Loop Nesting
Higher number of loop nesting should be avoided; static analyzer tools are used to measure this violation. Due
to higher number of loop nesting proper code review is not possible and additionally system performance also
degrades. This attribute also takes a part in software clarity check.

Cyclomatic Complexity
Cyclomatic complexity of each individual function should be checked during the control flow analysis.
Usually McCabe algorithm is used for the measurement of Cyclomatic Complexity of a function. A high
number for the Cyclomatic Complexity value means code is difficult to test and maintain. On the other hand
system performance is degraded with higher complexity.

It is a software matrix which is used to measure the complexity of the software program. Cyclomatic Com-
plexity matrix is mainly based on the number of decisions/linearly independent paths in a program’s source
code.

V (G)= No. of edges - No. of nodes + 2

Essential Cyclomatic Complexity
Essential Cyclomatic Complexity of each individual function should also be checked during the control flow
analysis. It is a rare algorithm and is not followed in common software analyzer tools. This algorithm checks
whether the target function is properly structured or not. Normally this algorithm is used in Structure
Programming Verification (SPV). Limit of this algorithm is also selectable and depends on organizational
standards.

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 5

I nven t ing the fu tu re
CONSULTANT

Unreachable code is a program code fragment which is never executed. It only adds to the size of the program
but neither causes any performance losses nor contributes to any computation. However, its presence may
indicate some logical errors. Unreachable fragment of code could be removed without any modification in
program.

Below is an example of unreachable code:

Inaccessible/Unreachable Code

1. intfunc (int x)
2. {
3. int y = x*2;
4. return y;
5. // Inaccessible code
6. if (y < 10)
7. {
8. y += 10;
9. }
10. return y;
11. }

Example:

It is recommended that number of functions per module should be defined in organizational standards. There
shall be some limit on number of functions when modularity approach is followed in the project. This measure
can balance the module density but it depends on the criticality of the application. It is not a compulsory
check for safety critical applications but it can reduce testing time in the dynamic analysis.

Number of Functions

Unconditional Jumps are strictly prohibited in safety critical applications. Unconditional Jumps always create
uncertainty in the module structure. Let's see an example:

Unconditional Jumps

Unstructured Code

1. x = 0
2. x= x + 1
3. PRINT x; " squared = "; x * x
4. IF x >= 10 THEN GOTO 6
5. GOTO 2
6. PRINT "Program Completed."

Structured Code

1. FOR x= 1 TO 10
2. PRINT x; " squared = "; x * x
3. NEXT x
4. PRINT "Program Completed."
5. END

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 6

I nven t ing the fu tu re
CONSULTANT

A checklist could be created to ensure that complete code is properly structured. For example, in the follow-
ing table we have taken three attributes from above sections and compared each function to decide whether
the functions are properly structured or not.

Structure Programming Verification

Checklist

Static data flow analysis plays an important role in performance improvement of source code modules. It is a
technique for gathering information about the possible set of values that data can take during the execution
of the system.

Static Data Flow

If we design a program to create, set, read, evaluate and destroy data; then we must consider the errors that
could occur during those processes.

Some examples of data flow errors are mentioned below:

Purpose of Static Data Flow Analysis

Assigning an incorrect or invalid value to a variable. These kinds of errors include data-type conversion
issues where the compiler allows a conversion but there are side effects that are undesirable.

Incorrect input results in the assignment of invalid values.

Failure to define a variable before using its value elsewhere.

Incorrect path taken due to the incorrect or unexpected value used in a control predicate.

Trying to use a variable after it is destroyed or out of scope.

Redefining a variable before it is used.

Set-Use pairs are a notation of data flow. In Set-Use pair, we split the life cycle of a data variable into three
patterns.

Function Name

Func_1

Func_2

Func_3

Func_4

Func_5

Cyclomatic
Complexity

PASS

PASS

PASS

FAIL

PASS

Essential
Complexity

PASS

PASS

FAIL

PASS

PASS

Unconditional
Jumps

NO

NO

NO

NO

YES

Structure
Programming
Verification
YES

YES

NO

NO

NO

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 7

I nven t ing the fu tu re
CONSULTANT

“~” notation is used to identify whether a variable is defined first or last e.g. ~x means the variable is defined
first and then used and x~ means the variable is defined after use.

No.

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

Notation

~d
du
dk
~u

ud
uk
~k
ku
kd

dd
uu
kk
d~
u~
k~

Anomaly

first define
define-use
define-kill
first use

use-define
use-kill
first kill
kill-use
kill-define

define-define
use-use
kill-kill
define last
use last
kill last

Explanation

Allowed.
Allowed, normal case.
Bug, data were never used.
Potential bug, data were used without definition. It may be a global variable, defined
outside the routine.
Allowed, data used and then redefined.
Allowed,
Potential bug, data are killed before definition.
Serious defect, data are used after being killed.
Usually allowed. Data are killed and then redefined. Some theorists believe this should
be disallowed.
Potential bug, double definition.
Allowed, normal case. Some do not bother testing this pair since no redefinition occurred.
Likely bug.
Potential bug, dead variable? May be a global variable used in another context.
Allowed. Variable was used in this routine but not killed off.
Allowed, normal case.

[d:] Defined

[u:] Used

[k:] Killed

When the variable is defined, initialized or created

When the variable is used in computation

When the variable is killed or destroyed

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 8

I nven t ing the fu tu re
CONSULTANT

Data Flow Anomaly Example
1. public static double paymentcal (int point)
2. {
3. doublepayment = 0;
4. if (point > 0)
5. {
6. payment= 40;
7. if (point>100)
8. {
9. if(point <=200)
10. {
11. payment = payment + (point - 100) * 0.5;
12. }
13. else
14. {
15. payment = payment+ 50 +(point-200) *0.1;
16. if(payment >=100)
17. {
18. payment = payment * 0.9;
19. }
20. }
21. }
22. }
23. returnpayment;
24. }

Assuming some points were used, however, the payment is set to $40 in line 6. In line 7 we see if more than
100 points were used; in line 9 we check if more than 100 but less than 200 points were used. We calculate
the extra points over 100 and add $0.50 for each one. If over 200 points, we take the base payment, add
$50.00 for the first extra 100 points, and then bill $0.10 per point for all extra points. Finally, we calculate
the discount if the payment is over or equal to $100.00.

Case

1.
2.
3.
4.
5.
6.
7.

Anomaly

~d (3)
dd (3-6)
du
(3-23)(6-11)(6-15)(15-18)
ud (11-11)(15-15)(18-18)
uu (16-18)(16-23)
uk (23-24)
k~ (24)

Type

First Define
Define and Define
Define and Use
Use and Define
Use and Use
Use and Kill
Kill Last

 Explanation

 normal case
 suspicious
 normal case
 acceptable
 normal case
 normal case
 normal case

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 9

I nven t ing the fu tu re
CONSULTANT

Data flow analysis is a strong technique to make the code reliable by scanning it in a systematic way such
that the information about the variables, which are being used in the program, is collected and then conclu-
sions can be made about the side effects of each variable.

Why Static Data Flow Analysis?

Data flow is used to analyze expected and unexpected paths of the software. It is helpful in measuring the
impact of one non-critical software module on critical software modules.

Recommendations

Dynamic analysis presents a clear view of the code at the time of execution. By using this analysis, teams
become aware of all logical bugs, unreachable state of code, boundary conditions of loops, and run time
behavior of variables.

Dynamic Code Analysis

Dynamic Data
FlowPath Analysis

MC/DC Coverage

Decision Condition
Coverage

Statement
Coverage

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 10

I nven t ing the fu tu re
CONSULTANT

In this section we will discuss following dynamic measurement techniques that are commonly used in safety
and security critical applications validation:

Statement Coverage

Decision Condition Coverage

MC/DC Coverage

Path Analysis

Dynamic Data Flow

The statement coverage concept is that, every line of code should be exercised at least once during the
process of testing. This coverage technique is also called line coverage or basic path coverage. This technique
is usually executed by using control flow graphs. Every path which does not have any condition is called
basic path and if we are traversing these paths then we are executing statement coverage. Software tools
record these paths and prepare a report to show the percent coverage achieved.

Statement Coverage

During the basic path execution project relevant team can see the reaction of the system when some harmful
statement occurs.

Following is an example of statement coverage:

Statement Coverage Example

System is started with the default value of a variable W = 0.

System will follow the basic path after startup 1->2->3->5.

This path will be covered during the statement coverage.

Second path is 1->2->4->5 and this path is only possible when a value of a variable w>=5.

Second path will be a part of branch/decision coverage and it is described in the following sections:

1

2

3

5

 2

4

W>=5

W>5

System Default Parameters
W = 0

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 11

I nven t ing the fu tu re
CONSULTANT

Statement coverage is the easiest coverage matrix in the dynamic code analysis. It helps the teams to find
out bugs that may be inherent in the area which are rarely used. Positive aspect of this coverage is that it is
not resource consuming and also builds assessor's confidence on the source code. This technique explores
the paths as much as possible within its boundaries because the source code consists of a lot of conditions,
loops and jumps.

Why Statement Coverage?

Many standards and tools recommend that project teams should analyze their code at least to this level. It
could eliminate infeasible area of code from your application and be beneficial during the code optimization.

Recommendations

Decision condition coverage is extensively used throughout the software industry. It is a compulsory level for
highly critical applications in order to make the code assessor confident of the code reliability.

Decision Condition Coverage

This technique is hybrid form of decision and condition coverage hence the name “Decision Condition” cover-
age. Here we need to fulfill both decision and condition coverage.

Source Code: if (A AND B)
To cover this decision through decision condition coverage software tool presents the following test cases:

Decision Condition Example

Note that we were able to achieve decision condition coverage without adding any additional test cases.
Normally we can achieve decision condition coverage without adding extra test cases; we just need to care-
fully design the test inputs to fulfill the two simultaneously.

A

True

False

Fulfill Atomic

B

True

False

Fulfill Atomic Condition

A AND B (Outcome)

True

False

Fulfill Decision Condition

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 12

I nven t ing the fu tu re
CONSULTANT

Using statement coverage, we were able to execute all lines but not all branches
of code. The disadvantage of covering only statement coverage is that we might
miss a critical bug which is hidden in some other branches.
Consider the example below:

1. x = 0;
2. if (a > b) then
3. x = 3;
4. else
5. Rep = 63/x;

Test 1: Black arrows
a = 3, b = 2, Rep = 6

Why Decision Condition Coverage?

A

False (Case-1)

True (Case-2)

B

True (Case-1)

False (Case-2)

A AND B (Outcome)

False

False

In this technique the decision is made to execute both the true and false path once each.

Consider example: if (A AND B) condition occurs in the source code, the decision coverage software tool will
present the following test cases:

Decision Coverage

This technique focuses more on the atomic conditions available in the decision rather than the decision
outcome itself. We need to make all atomic conditions once true and once false irrespective of the decision
outcome.

Consider example: if (A AND B) condition occurs in the source code, the condition coverage software tool will
present the following test cases:

Condition Coverage

A

True

True

B

True

False

A AND B (Outcome)

True

False

Possible Decisions

Decision-1

Decision-2

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 13

I nven t ing the fu tu re
CONSULTANT

Test 2: Grey arrows
a =2, b = 3, Rep =? (CRASH)

In the above example, Test 1 gives 100% statement coverage. However, if we execute Test 2 (to cover deci-
sion condition coverage) we will find that execution of line 5 will cause the software to crash as x is 0 and
division by 0 is not defined. This is an example of a bug unearthed by decision coverage which would have
been overlooked if we relied only on statement coverage.

MC/DC (Modified Condition/Decision Condition) measurement is considered to be the highest and most
powerful technique in the software industry. To ensure the software reliability for airborne systems, Radio
Technical Commission for Aeronautics (RTCA) created a guideline and made this technique a compulsory part
of safety certification.

This level of coverage is considered stronger because we add another factor to what we were already testing
in decision condition coverage. Our bug hypothesis states that we might find a bug hiding in that last little
space that we have not tested. MC/DC requires that each atomic condition be tested both ways and that
decision coverage must be satisfied. It then adds one more factor as shown in the chart.

Let’s put the theory to test with a project example: in this example we will perform both decision condition
and MC/DC analysis.

MC/DC Coverage

Problem Statement: Consider an automatic traffic violations capture system which activates a camera snap-
shot whenever a car`s wheels are on/over the line marking the start of intersection, the traffic light is RED
and the car is speeding. To drill down the logic implemented, we have the following pseudo code:

At least one test where the decision outcome would change if the
atomic condition X were TRUE

At least one test where the decision outcome would change if the
atomic condition X were FALSE

Each different atomic condition has tests that meet requirements
1 and 2

It is strongly recommended for software engineers to maximize coverage to at least this level. Any unneces-
sary or infeasible branches should be removed in order to improve the efficiency and compactness of the
code.

Recommendations

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 14

I nven t ing the fu tu re
CONSULTANT

To achieve maximum coverage we need to execute each combination which results in eight test cases for
three inputs (2N). We can achieve similar outcomes from MC/DC coverage but with lesser number of test
cases. If there are N atomic conditions, MC/DC can normally be achieved in N+ 1 test cases.

For highest level of coverage required under FAA DO/178C Level A, MC/DC coverage is performed. RCTA and
CENELEC standards state that the software that can cause catastrophic impacts on human life should be
verified through MC/DC coverage. In other words all the planes that come out of Boeing production have their
software verified through MC/DC coverage technique.

Interesting Facts

Test Cases

Decision Condition Coverage
Test-1

Test-2

MC/DC Coverage
Test-1

Test-2

Test-3

Test-4

LIGHT = RED

TRUE

FALSE

TRUE

FALSE

TRUE

TRUE

WHEELS =
ON-LINE

TRUE

FALSE

TRUE

TRUE

FALSE

TRUE

CAR = SPEED

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

OUTCOME

TRUE

FALSE

TRUE

FALSE

FALSE

FALSE

• LIGHT = RED
• WHEELS = ON-LINE
• CAR = SPEED

• LIGHT = NOT RED
• WHEELS = OF-LINE
• CAR = STILL

Test-1

Test-2
• LIGHT = RED
• WHEELS = ON-LINE
• CAR = SPEED

• LIGHT = NOT RED
• WHEELS = ON-LINE
• CAR = SPEED

Test-2

• LIGHT = RED
• WHEELS = OF-LINE
• CAR = SPEED

• LIGHT = RED
• WHEELS = ON-LINE
• CAR = STILL

IF (light=RED &&wheels =On-line &&car =SPEED)

MC/DC CoverageDecision Condition Coverage

Source Code Condition

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 15

Test-1

Test-4

Test-3

I nven t ing the fu tu re
CONSULTANT

Path Analysis

Introduction
The main goal behind path analysis is that outcomes of every
Cyclomatic path should be exercised at least once. Decisions of
Cyclomatic path should be recorded in a report and analyzed to
know which paths could be harmful for the application. In
above stated dynamic coverage methods like statement and
decision condition there will still be some possibilities of
hidden defects, we can increase degree of coverage by execu-
tion of Cyclomatic paths. Although we have achieved a high
level of coverage from statement and decision condition but
some experts refer that additional paths should also be
traversed at least once in the project life cycle even when
nature of application is highly security/safety critical.

McCabe software is quite famous in path analysis techniques.
Following are some examples of path analysis.
1. void copyStr (char** dest, char** src, int start, int end){
2. intToCopy = 1;
3. intlastpos = strlen(*src)-1;
4. if (end >lastpos){
5. end = lastpos;
6. }
7. If (start < 0) {
8. start = 0;
9. }
10. if(end > start){
11. ToCopy += (end-start);
12. }
13. Strncpy (*dest, (*src)+start, ToCopy);
14. }

Above function contains four Cyclomatic paths. Two paths will
be exercised during decision condition coverage but additional
two paths need to be exercised for complete path analysis.

 1

2

6

FALSE

FALSE

8

TRUE

5

TRUE

FALSE

2

4

3

7

TRUE

6

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 16

I nven t ing the fu tu re
CONSULTANT

Coverage

Statement +
Decision
Condition

Test Cases

char* original = “Hello”;
char* copy = (char*)malloc (80);
Test-1:
copyStr (©, &original, -500,
500);

Blue area has been executed with
this test data

Flow Graph

Test Case-1

Statement + Decision Condition
char* original = “Hello”;
char* copy = (char*)malloc (80);
Test-1:
copyStr (©, &original, -500,
500);

Blue area has been executed with
this test data
 Test-2:
copyStr (©, &original, 0, 0);

Blue area has been executed with
this test data

Test Case-2

Statement + Decision Condition is
executed 100 %

 1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

TRUE

TRUE

TRUE

 1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

TRUE

TRUE

TRUE

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 17

I nven t ing the fu tu re
CONSULTANT

Path analysis is a different measurement technique with respect to code coverage methods. The code cover-
age like statement and decision condition are more focused on code structuring and their decisions, whereas
path analysis measurement developed by McCabe software highlights the Cyclomatic paths which are
directly proportional to the complexity level of the functions. McCabe group insists code analysts to exercise
Cyclomatic paths at least once in the project life cycle so that target application will be free from security
vulnerabilities.

Why Path Analysis?

Path Coverage Additional two test cases are
required to complete path analy-
sis

Test-3:
copyStr (©, &original, -10, 0);

Test Case-3

Test-4:
copyStr (©, &original, 1000,
100);

Note: This test path exercises the
out-of-bounds access of a string. If
you analyze the test data, you will
conclude that string buffer is smaller
than base string size. It is a common
mistake that is mostly overlooked in
the code review and decision condi-
tion analysis. It is a string manipula-
tion defect which is strictly prohibited
in the security critical certification
standards.

Test Case-4

 1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 18

I nven t ing the fu tu re
CONSULTANT

Path analysis technique is especially recommended for security critical applications. This technique also
covers decision coverage at higher level, so it can also be used instead of decision condition coverage in
different types of projects. Before using this technique in safety critical applications it is necessary to
contact your respective standards and certification bodies.

Recommendations

Dynamic Data Flow

Introduction
It is a powerful measurement technique that traces the test paths initiated by control flow test data. Code
coverage techniques focus on execution of control flow whereas data flow report focuses on run time
utilization of variables during the control flow.
In the static data flow technique, as discussed above, tools are used to analyze the code and estimate the
paths in which code will be executed. On the other hand, in dynamic data flow technique tools trace these
paths by using local and global variable utilization. The most beneficial part of this technique is that it shows
the impact of software functions and variables to other functions and variables while data is executing.
Safety agencies like RCTA are quite concerned about the data usage and impact of data on other safety or
non-safety modules in the application.

Dynamic data flow analysis identifies and narrows down the scope of software functions. It gives clear idea
to code analysts about the interface between software modules and side effects of each impact.

Why Dynamic Data Flow?

This technique is recommended for airborne and all other systems which require certification from RCTA. The
advantage of this technique is that tester does not have to write any new test data for the measurement so
test case writing time is eliminated as a result. It is a supportive technique in highly critical applications.

Recommendations

This section will cover the coding measurement techniques mapping with the safety critical applications. All
information in this section is inherited from safety standards either IEC 61508 branch standards or DO-178C
standard.

Coding Measurements for Safety Critical Application

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 19

I nven t ing the fu tu re
CONSULTANT

CENELEC IEC 61508 safety standards use the following approach.

RCTA DO178B standards use the following approach.

Delivered Quality Control Systems Team of Functional Safety Experts Delivered Highly Critical
Applications

- Code Review - Code Review
- Control Flow
 Analysis

- Code Reivew
- Control Flow
 Analysis
- Statement Coverage
- Decision Condition
 Coverage

- Code Reivew
- Control Flow
 Analysis
- Statement Coverage
- Decision Condition
 Coverage
- Dynamic Data Flow
 (Supportive
 Measurement)

SIL 1 SIL 2 SIL 3 SIL 4

- Statement Coverage
- Static Data Flow Analysis
- Dynamic Data Flow
 Analysis
- Decision Condition
 Coverage
- MC/DC Coverage

- Statement Coverage
- Static Data Flow
 Analysis
- Dynamic Data Flow
 Analysis
- Decision Condition
 Coverage

- Statement Coverage
- Static Data Flow
 Analysis
- Dynamic Data Flow
 Analysis

- Formal Code Review

System Level A
System Level B

System Level C
System Level D

 © SQA Consultant. All Rights Reserved. www.sqaconsultant.com | 20

I nven t ing the fu tu re
CONSULTANT

Contact Us
Explore ways to use our expertise in growing your business while establishing a valuable partnership
with us.

Contact our consultants at:

Phone: +1. 412.533.1700 (Ext: 585)
E-mail: info@sqaconsultant.com
Website: www.sqaconsultant.com

I nven t ing the fu tu re
CONSULTANT

